Application note Description of the setting posibilitys:

AD-FM 400 GA

Multiplicator:

These four switches show the frequency at which an output current of 20 mA is reached.
The digit position of the left part three switches show the frequency value and the fourth switch adjusts the colon, whereby position "0" to "3" are used. For example

Inputfrequenz:

$12,50 \mathrm{~Hz}$
$3,20 \mathrm{~Hz}$
$0,11 \mathrm{~Hz}$
$0,08 \mathrm{~Hz}$

setting:

1253 für 20mA
3202 für 20mA
1101 für 20mA
8000 für 20 mA

Specialty:

Colon switch in position "9" makes the AD-FM 400 a constant current source. The dividing/multiplyer function is disabled and the above described switch positions are a XX,S percentage of 20 mA . Switch position 5009 means an output current of 50% of 20 mA which equals a current of 10 mA .

Damping factor:

This switch sets the damping factor of the analogue output. For example in position "2" the damping time is $0,4 \mathrm{sec}$. which means that in case that no more pulses are input the output current is reduced to 50% of its value after this time.

Lower Row of Switches:

The left side four switches work as a multiplier whereby each input pulse is multiplied by the value set here.
The right side 4 switches work as a divider whereby each input pulse is divided by the value set here.
Multiplier and divider can be used combined for setting fraction numbers. The following examples explain the above:

Output pulse:			Input pulse:
1 pulse	at	2,5 pulses	Switches:
1 pulse	at	$1 ; 33$ pulses	00030000
12 pulses	at	1 pulse	00120001
1.45 pulses	at	1 pulse	01450100

Pulse width:

With this switch the switch-on time of the output relais is changed. As Input signal is also Initiator or contact possible. On the output side is contact standard but it is also a semiconductor output possible.

Multiplier for digit repetition outputrate
$0=0,00 \times X X$
$1=0,0 \times X X$
$2=X, X X$
$3=\times \times, X$
$9=0$ Output $=$ Power source
(Digit repetition $=X X, X \%$)
Digit repetiton XXX of the inputrate Range 100 to 999

Time define constant code for analogous output

$0=$ without	$4=1,6 \mathrm{sec}$	$7=15 \mathrm{sec}$
$1=0,2 \mathrm{sec}$	$5=3,2 \mathrm{sec}$	$8=30 \mathrm{sec}$
$2=0,4 \mathrm{sec}$	$6=7,5 \mathrm{sec}$	$9=60 \mathrm{sec}$
$3=0,8 \mathrm{sec}$		

